

Road map

Documented: http://www.phenix.bnl.gov/plans.html

Current PHENIX sPHENIX (+fsPHENIX) An EIC detector 14y+ operation Comprehensive central Path of PHENIX upgrade leads 100+MS investment upgrade base on BaBar magnet to a capable EIC detector Broad spectrum of physics Rich jet and beauty quarkonia Large coverage of tracking, (QGP, Hadron Physics, DM) calorimetry and PID physics program → nature of QGP 140+ published papers to Open for new fsPHENIX: forward tracking, collaboration/new ideas date Hcal and muon ID \rightarrow Spin, CNM Last run in this form 2016

~2000

2017→2020

~2025

Time

RHIC: A+A, spin-polarized p+p, spin-polarized p+A

EIC: e+p, e+A

Envelope on current sPHENIX design (calorimeter only)

HCal geometry is significantly revised Preliminary magnetic end-door design

Calorimetry overview

- This talk is to walk through consideration of forward calorimeter design and collect your feed back.
- Jet energy resolution
 - Primary serve for kinematics determination
 - Tail under control (<20%?) for unfolding
- Jet angular resolution
 - Primary serve for relative momentum determination, e.g. hadron in jet, jet-gamma correlation, jet-jet correlation
- Assist DY muon ID
 - DY muon leave ~3GeV MIP signal in HCal. Independent check with muon ID
 - Isolation around the muon track candidate
- EMCal layer open up possibility of electron-DY too
- Jets and hadron final state detection @ EIC (-1<η<+4)</p>
 - See also next talk Vladimir Skokov

Calorimeter as part of magnet system

Calorimeter system serve as forward magnetic field return

Defines forward field geometry and tracking/PID volumne

What field shall we add in the forward? - Brain storm in the past few years

Design Family	Example
Piston	 Passive piston (C. L. da Silva) Active piston (J. Huang, C. L. da Silva) Super conducting piston (Y. Goto)
Dipole	 Forward dipole (Y. Goto, A. Deshpande, et. al.) Redirect magnetic flux of solenoid (T. Hemmick) Use less-magnetic material for a azimuthal portion of central H-Cal (E. Kistenev)
Toroid	Air core toroid (E. Kistenev)Six fold toroid (J. Huang)
Other axial symmetric Field shaper	 Large field solenoidal extension (C. L. da Silva) Pancake field pusher (T. Hemmick)

Passive piston

Beam line magnetic field shielding, based on superconducting pipe.

6 Piece Toroid around beam pipe

Pancake field pusher

Forward field design

 BaBar superconducting magnet is a power full and large magnet

Nominal field: 1.5T

Length: 385 cm

- Field calculation and yoke tuning
 - Preliminary field calculation in 2D:
 POISSION, FEM, OPERA and COMSOL
- Favor for forward spectrometer
 - Designed for homogeneous B-field in central tracking
 - Longer field volume for forward tracking
 - FOM (Position resolution) ~ B*L²
 - FOM (multiple scattering) ~ B*L
 - Higher current density at end of the magnet -> better forward bending
 - Work well with RICH with field-shaping yoke: Forward & central Hcal + Steel lampshade
- Shipped to BNL for sPHENIX

Field calculation in COMSOL (SBU)

Current consideration

The past design

Steel/scintillator sampling hadron calorimeter Coupling of forward calorimeter with sPHENIX field (budget, force, support)

<u>Current</u> design (only calorimeter is shown)

Restack of PHENIX EMCal

Keep magnetic end door ~ 1 interaction length, enough for field return

Stage-able HCal outside

Detector choice reference

Courtesy: O. Tsai, A. Kiselev

EMCal concept
Reuse of PHENIX EMCal
Light guide -> SiPM for readout

HCal concept UCLA/BNL Pb/Scint sampling calorimeter

fsPHENIX Calorimeters in Geant4

- The FEMC is based on the PHENIX EMCal:
 - Tower size 5.535 cm x 5.535 cm
 - 36.3 cm in length
 - Lead and polystyrene scint.
 - Center at z = 310cm
 - Sampling fraction = 29.5%
- The FHCAL is based on the forward HCAL in the sPHENIX proposal:
 - 10 cm x 10 cm tower size
 - 100 cm in length
 - Steel and polystyrene scintillator in 4:1 ratio
 - Front face at z = 400cm.
 - Sampling fraction = 3.9%

fsPHENIX Calorimeters in Geant4

Jet performance in Geant4

Magnet end door

-> 1 interaction length of inactive material Limited to ~14% - large constant term

Energy resolution

By John L.

Angular resolution

Connection to sPHENIX calorimetry

Would there be a jet coverage gap around $\eta=1$?

We were asked when presenting the design My guess is gap is minimal by summing all four calorimeters Finished Geant4 Jet production, close to quantify this effect

Geant4 Result from last generation of simulation:

- The missing central HCal piece produce a minor dip in jet energy response
- Require energy scale corrections
- Need revise for the new setups

re/te:teta {te>25}

Calorimetry Goals of this workfest

Calorimetry goals of this workfest

- New design
 - Look for comments from STAR/EIC colleagues and from external calorimeter experts
- Update the evaluation of jet performance
 - Simulation tutorial tomorrow. Help needed (Thanks Chong!)
 - Nils and I are putting together the update to ePHENIX sim
- Performance under pA background embedding (in full Geant4)
- Di-jet in ep, eA (in full Geant4)
 - Handle of background
 - Detector resolution to q_T smearing

need refresh for new calo, should do better

Presented: Appendix A, Nov-2014 sPHENIX proposal [arXiv:1501.06197]

Barrel calorimeter

Forward calorimeter

beam line

- R=0.6 is better for energy resolution
- R=0.4 is better for angular measurement and for pA
- Matching energy resolution in barrel for pp
- Good angular resolution
- Some complexity for
 - Energy matching barrelforward join region
 - Angular resolution for very forward region

